UGC NET GUIDE ACADEMY YOU TUBE CHANNEL CLICK FOR VISIT THIS CHANNEL
UGC NET GUIDE ACADEMY YOU TUBE CHANNEL 

Nuclear Hazards

Nuclear Hazards Nuclear energy can be both beneficial and harmful depending on the way in which it is used. We routinely use X-rays to examine bones for fractures, treat cancer with radiation and diagnose diseases with the help of radioactive isotopes. Approximately 17 % of the electrical energy generated in the world comes from nuclear power plants. However on the other hand it is impossible to forget the destruction that nuclear bombs caused the cities of Hiroshima and Nagasaki. The radioactive wastes from nuclear energy have caused serious environmental damage. Nuclear fission is the splitting of the nucleus of the atom. The resulting energy can be used for a variety of purposes. The first controlled fission of an atom was carried out in Germany in 1938. However the United States was the first country to develop an atomic bomb which was subsequently dropped on the Japanese cities of Hiroshima and Nagasaki. The world’s first electricity generating reactor was constructed in the United States in 1951 and the Soviet Union built its first reactor in 1954. In December 1953, President Dwight D. Eisenhower in his ‘Atoms for Peace’ speech made the following prediction: ‘Nuclear reactors will produce electricity so cheaply that it will not be necessary to meter it. The users will pay a fee and use as much electricity as they want. Atoms will provide a safe, clean and dependable source of electricity.’ Today however though nuclear power is being used as a reliable source of electricity the above statement sounds highly optimistic. Several serious accidents have caused worldwide concern about safety and disposal of radioactive wastes. In order to appreciate the consequences of using nuclear fuels to generate energy it is important to understand how the fuel is processed. Low-grade uranium ore, which contains 0.2 percent uranium by weight, is obtained by surface or underground mining. After it is mined the ore goes through a milling process where it is crushed and treated with a solvent to concentrate the uranium and produces yellow cake a material containing 70 to 90 percent uranium oxide. Naturally occurring uranium contains only 0.7 percent of fissionable U-235, which is not Chapter5.p65 143 4/9/2004, 5:09 PM 144 Environmental Studies for Undergraduate Courses high enough for most types of reactors. Hence it is necessary to increase the amount of U-235 by enrichment though it is a difficult and expensive process. The enrichment process increases the U-235 content from 0.7 to 3 percent. Fuel fabrication then converts the enriched material into a powder, which is then compacted into pellets. These pellets are sealed in metal fuel rods about 4 meters in length which is then loaded into the reactor. As fission occurs the concentration of U-235 atoms decreases. After about three years, a fuel rod does not have enough radioactive material to sustain a chain reaction and hence the spent fuel rods must be replaced by new ones. The spent rods are however still very radioactive containing about one percent U-235 and one percent plutonium. These rods are a major source of radioactive waste material produced by a nuclear reactor. Initially it was thought that spent fuel rods could be reprocessed to not only provide new fuel but also to reduce the amount of nuclear waste. However the cost of producing fuel rods by reprocessing was found to be greater than the cost of producing fuel rods from ore. Presently India does operate reprocessing plants to reprocess spent fuel as an alternative to storing them as nuclear waste. At each step in the cycle there is a danger of exposure and poses several health and environmental concerns. Although nuclear power has significant benefits an incident which changed people’s attitudes towards nuclear power plants was the Chernobyl disaster that occurred in 1986. Chernobyl is a small city in Ukraine near the border with Belarus north of Kiev. At 1.00 am April 25, 1986 a test to measure the amount of electricity that the still spinning turbine would produce if steam were shut off was being conducted at the Chernobyl Nuclear Power Station4. This was important information since the emergency core cooling system required energy for its operation and the coasting turbine could provide some of that energy until another source became available. The amount of steam being produced was reduced by lowering the control rods into the reactor. But the test was delayed because of a demand for electricity and a new shift of workers came on duty. The operators failed to program the computer to maintain power at 700 megawatts and the output dropped to 30 megawatts. This presented an immediate need to rapidly increase the power and many of the control rods were withdrawn. Meanwhile an inert gas (xenon) had accumulated on the fuel rods. The gas absorbed the neutrons and slowed the rate of power increase. In an attempt to obtain more power the operators withdrew all the control rods. This was a second serious safety violation. At 1.00am, the operators shut off most of the emergency warning signals and turned on all the eight pumps to provide adequate cooling for the reactor following the completion of the test. Just as the final stages for the test were beginning a signal indicated excessive reaction in the reactor. In spite of the warning the operators blocked the automatic reactor shutdown and began the test. As the test continued the power output of the reactor rose beyond its normal level and continued to rise. The operators activated the emergency system designed to put the control rods back into the reactor and stop the fission. But it was already too late. The core had already been deformed and the rods would not fit properly thus the reaction could not be stopped. In 4.5 seconds the energy level of the reactor increased two thousand times. The fuel rods ruptured the cooling water turned into steam and a steam explosion occurred. The lack of cooling water allowed the reactor to explode. The explosion blew the 1000 metric ton concrete roof from the reactor and the reactor caught fire. This resulted in the world’s worst nuclear accident and it took ten days to bring the runaway reaction under control. Chapter5.p65 144 4/9/2004, 5:09 PM Pollution 145 There were of course immediate fatalities, but the long-term consequences were devastating. 116,000 people were evacuated of which 24,000 had received high doses of radiation. Even today many people suffer from illnesses they feel are related to their exposure to the fallout from Chernobyl. In 1996 ten years after the accident it was clear that one of the longterm effects was the increased frequency of thyroid cancer in children. The degree and the kind of damage from nuclear accidents vary with the kind of radiation, the amount of radiation, the duration of exposure and the types of cells irradiated. Radiation can also cause mutations which are changes in the genetic makeup of the cells. Mutations can occur in the ovaries or the testes leading to the formation of mutated eggs or sperms which in turn can lead to abnormal offspring. Mutations can also occur in the tissues of the body ad may manifest themselves as abnormal tissue growths known as cancer. Two common cancers that are linked to increased radiation exposure are leukemia and breast cancer. 5.3 SOLID WASTE MANAGEEMNT: CAUSES, EFFECTS AND CONTROL MEASURES OF URBAN AND INDUSTRIAL WASTE In ancient cities, food scraps and other wastes were simply thrown into the unpaved streets where they accumulated. Around 320 B.C. in Athens, the first known law forbidding this practice was established and a system of waste removal began to evolve in several eastern Mediterranean cities. Disposal methods were very crude and often were just open pits outside the city walls. As populations increased, efforts were made to transport the wastes out further thus creating city dumps. Until recently the disposal of municipal solid waste did not attract much public attention. The favoured means of disposal was to dump solid wastes outside the city or village limits. Around most towns and cities in India the approach roads are littered with multi-coloured plastic bags and other garbage. Waste is also burnt to reduce its volume. Modern methods of disposal such as incineration and the development of sanitary landfills, etc. are now attempting to solve these problems. Lack of space for dumping solid waste has become a serious problem in several cities and towns all over the world. Dumping and burning wastes is not an acceptable practice today from either an environmental or a health perspective. Today disposal of solid waste should be part of an integrated waste management plan. The method of collection, processing, resource recovery and the final disposal should mesh with one another to achieve a common objective.



Nuclear Hazards Nuclear Hazards Reviewed by শ্রী শ্রী সত্যনারায়ণ নমঃ on November 09, 2018 Rating: 5

No comments:

Powered by Blogger.