UGC NET GUIDE ACADEMY YOU TUBE CHANNEL CLICK FOR VISIT THIS CHANNEL
UGC NET GUIDE ACADEMY YOU TUBE CHANNEL 

DISASTER MANAGEMENT: FLOODS, EARTHQUAKES, CYCLONES, LANDSLIDES

DISASTER MANAGEMENT: FLOODS, EARTHQUAKES, CYCLONES, LANDSLIDES 

The Indian subcontinent is very vulnerable to droughts, floods, cyclones, earthquakes, landslides, avalanches and forest fires. Among the 36 states and Union territories in the country, 22 are prone to disasters. Among all the disasters that occur in the country, floods are the most frequently occurring natural disasters, due to the irregularities of the Indian monsoon. About 75 Pollution 157 the pre-disaster, during disaster and post disaster plans. Since their activities are complementary as well as supplementary to each other there is a critical need for coordinating these activities. In order to transfer the benefits of scientific research and development to the communities links must be developed between scientific communities and field agencies. Coordination between Government agencies and NGOs needs to be built up so that overlap of activities may be avoided and linkages between the Government and communities are established. Today we have a range of early warning systems for a range of natural hazards. Although they are more accurate than before and can help in prediction it is not enough to ensure communities are safe from disasters. This is where disaster mitigation can play an important role. Mitigation means lessening the negative impact of the natural hazards. It is defined as sustained action taken to reduce long term vulnerability of human life and property to natural hazards. While the preparatory, response and the recovery phases of emergency management relate to specific events, mitigation activities have the potential to produce repetitive benefits over time. Certain guidelines if followed can result in an effective mitigation program. • Pre-disaster mitigation can help in ensuring faster recovery from the impacts of disasters. • Mitigation measures must ensure protection of the natural and cultural assets of the community. • Hazard reduction methods must take into account the various hazards faced by the affected community and their desires and priorities. • Any mitigation program must also ensure effective partnership between Government, scientific, private sector, NGOs and the community. The main elements of a mitigation strategy are as follows: Risk assessment and Vulnerability analysis This involves identification of hot spot areas of prime concern, collection of information on past natural hazards, information of the natural ecosystems and information on the population and infrastructure. Once this information is collected a risk assessment should be done to determine the frequency, intensity, impact and the time taken to return to normalcy after the disaster. The assessment of risk and vulnerabilities will need to be revised periodically. A regular mechanism will therefore have to be established for this. The use of Geographical Information Systems (GIS) a computer program can be a valuable tool in this process as the primary data can be easily updated and the corresponding assessments can be made. Applied research and technology transfer There is a need to establish or upgrade observation equipment and networks, monitor the hazards properly, improve the quality of forecasting and warning, disseminate information quickly through the warning systems and undertake disaster simulation exercises. Thus space technologies such as remote sensing, satellite communications and Global Positioning Systems have a very important role to play. Government organizations like ISRO (Indian Space Research Organization) can play a vital role. Similarly Government organizations the National Building Research Organization, the Meteorological Department, Irrigation Department, etc. can undertake applied research for devising locale specific mitigation strategies in Chapter5.p65 157 4/9/2004, 5:09 PM 158 Environmental Studies for Undergraduate Courses collaboration with educational institutions or Universities. Such steps could lead to the formulation of locale specific mitigation measures. A combination of scientific knowledge and expertise with the community based mitigation measures would not only enhance the database but would also form the basis of a successful mitigation strategy. Public awareness and training One of the most critical components of a mitigation strategy is the training to be imparted to the officials and staff of the various departments involved at the state and the district level. This enables sharing of information and methodology. The success of a mitigation strategy will depend to a large extent on the inter-sectional, inter-departmental coordination and efficient teamwork. Thus a training program that is designed after assessment of gaps in knowledge, skills and attitude with respect to the various tasks that need to be undertaken is a vital component. Institutional mechanisms The most important need at the National level is to strengthen or develop the capacity to undertake disaster mitigation strategies. There is a need to emphasize on proactive and pre-disaster measures rather than post disaster response. It is thus essential to have a permanent administrative structure which can monitor the developmental activities across departments and provides suggestions for necessary mitigation measures. The National Disaster Management Center (NDMC) can perform such a task. Professionals like architects, structural engineers, doctors, chemical engineers who are involved with management of hazardous chemicals can be asked to form groups that can design specific mitigation measures. Incentives and resources for mitigation To a very large extent the success of mitigation programs will depend upon the availability of continued funding. There is thus a need to develop mechanisms to provide stable sources of funding for all mitigation programs. This will include incentives for relocation of commercial and residential activities outside the disaster prone areas. Housing finance companies should make it mandatory for structures in such hazard prone areas to follow special building specifications. The introduction of disaster linked insurance should be explored and should cover not only life but also household goods, cattle, structures and crops. Landuse planning and regulations Long term disaster reduction efforts should aim at promoting appropriate land-use in the disaster prone areas. Separation of industrial areas from residential areas, maintaining wetlands as buffer zones for floods, creation of public awareness of proper land practices and formation of land-use policies for long term sustainable development is imperative. Hazard resistant design and construction In areas that are prone to disasters protection can be enhanced by careful selection of sites and the way the buildings are built. Thus it is essential to promote the knowledge of disaster resistant construction techniques and practices among engineers, architects and technical personnel. Structural and Constructional reinforcement of existing buildings It is also possible to reduce the vulnerability of existing buildings through minor adaptations or alterations thereby ensuring their safety. This can be done by insertion of walls on the outside of the building, buttresses, walls in the interior of the building, portico fill-in-walls, specially anChapter5.p65 158 4/9/2004, 5:09 PM Pollution 159 chored frames, covering of columns and beams, construction of new frame system, placing residential electrical equipment above flood level, designing water storage tanks to be able to withstand cyclonic winds, earthquakes and floods, etc. Floods and mitigation measures The lower plain regions of India in particular Bihar, Uttar Pradesh and West Bengal in respect of the Ganga and Assam in respect of the Brahmaputra suffer from the adverse effects of floods every year. The Ganga Brahmaputra basin receives maximum run off within the three monsoon months. Based on hydrological studies carried out, it is estimated that only 18 percent of the rainwater can be stored in dams, reservoirs, etc. while 82 percent of the rainwater flows through rivers ultimately into the sea. Floods are therefore a recurring phenomenon in our country. Floods can be caused by natural, ecological or anthropogenic factors either individually or as a combined result. Anthropogenic activities such as deforestation and shifting cultivation can also contribute to floods. Forests on the hill slopes normally exert a sponge effect soaking up the abundant rainfall and storing it before releasing it in small amounts over a period of time. However when the forests are cleared the rivers turn muddy and swollen during the wet monsoon season and run dry later on in the year during the drier periods. An increasing proportion of the rainfall is therefore released shortly after precipitation in the form of floods. The mitigation measures for floods include both structural and non-structural measures. The structural measures include: • Reservoirs for impounding monsoon flows to be released in a regulated manner after the peak flood flow passes. • Prevention of over-bank spilling by the construction of embankments and floodwalls. • Improvement of flow conditions in the channel and anti-erosion measures. • Improved drainage. The non-structural measures include: • Flood plain management such as Flood Plain Zoning and Flood Proofing including Disaster Preparedness • Maintaining wetlands • Flood forecasting and warning services • Disaster relief, flood fighting and public health measures • Flood insurance Earthquakes and mitigation measures It has been several years since the earthquake struck Gujarat on January 26, 2001. In these years rehabilitation has been done on a massive scale. Gujarat’s experience has taught that building shelters with less vulnerability to earthquakes should also take into consideration the specific needs of the victims instead of being a top down approach. The role of NGOs in this is very important. Their strength lies in their manpower, informality in operations and valuable human resources. Their ability to reach out to the community and sensitivity to local traditions is an asset in such situations. A report on the various initiatives in Gujarat reported in Down to Earth (Vol 12, No. 2) by Mihir Bhatt throws light on the various developments that have taken place after the earthquake. According to the report the initiatives of the International Fund for Chapter5.p65 159 4/9/2004, 5:09 PM 160 Environmental Studies for Undergraduate Courses Agriculture Development in supporting the Self Employed Women’s Association and the Government’s initiative in community based livelihood security for earthquakes and drought victims have the potential to shape future disaster response and development projects in Gujarat. Similarly the Gujarat Woman’s Economic Development Corporation initiative in reviving women’s businesses after the calamity also provides many practical lessons in regenerating local economies and artisan markets. This project supported by the Asian Development Bank, puts premium on investments in income generation and asset building after a natural disaster. The farming kits provided to affected farmers by Gujarat’s agriculture ministry is also showing promising results after two seasons. The author however states that coordination between Government, local NGOs and local community initiatives both for rescue as well as rehabilitation needs to be strengthened as this can cause delays, overlaps and waste of relief material and efforts. Cyclones and mitigation measures Tropical cyclones are the worst natural hazards in the tropics. They are large revolving vortices in the atmosphere extending horizontally from 150 to1000 km and vertically from the surface to 12 to 14 km. These are intense low-pressure areas. Strong winds spiraling anti clockwise in the Northern Hemisphere blow around the cyclone center at the lower level. At the higher levels the sense of rotation is just opposite to that at the lower level. They generally move 300 to 5000 km per day over the ocean. While moving over the ocean they pick up energy from the warm water of the ocean and some of them grow into a devastating intensity. On an average about 5 to 6 tropical cyclones form in the Bay of Bengal and the Arabian Sea every year out of which 2 to 3 may be severe. More cyclones form in the Bay of Bengal than in the Arabian Sea. The main dangers from cyclones are very strong winds, torrential rains and high storm tides. Most of the causalities are caused by coastal inundation by storm tides. This is often followed by heavy rainfall and floods. Storm surges cause the greatest destruction. Although one cannot control cyclones, the effects of cyclones can be mitigated through effective and efficient mitigation policies and strategies. A brief description of the same is given below. Installation of early warning systems: Such systems fitted along the coastlines can greatly assist forecasting techniques thus helping in early evacuation of people in the storm surge areas. Developing communication infrastructure: Communication plays a vital role in cyclone disaster mitigation and yet this is one of the first services that gets disrupted during cyclones. Amateur Radio has today emerged as a second line unconventional communications systems and is an important tool for disaster mitigation. Developing shelter belts: Shelter belts with plantations of trees can act as effective wind and tide breakers. Apart from acting as effective windbreakers and protecting soil crops from being damaged they prevent soil erosion. Developing community cyclone shelters: Cyclone shelters at strategic locations can help minimizing the loss of human life. In the normal course these shelters can be used as public utility buildings. Construction of permanent houses: There is a need to build appropriately designed concrete houses that can withstand high winds and tidal waves. Training and education: Public awareness programs that inform the population about their response to cyclone warnings and preparedness can go a long way in reducing causalities. Chapter5.p65 160 4/9/2004, 5:09 PM Pollution 161 Landuse control and settlement planning: No residential and industrial units should be ideally permitted in the coastal belt of 5 km from the sea as it is the most vulnerable belt. No further growth of settlements in this region should allowed. Major settlements and other important establishments should be located beyond 10 km from the sea. Landslides and mitigation measures Landslides are recurring phenomena in the Himalayan region. In the recent years however intensive construction activity and the destabilizing forces of nature have aggravated the problem. Landslides occur as a result of changes on a slope, sudden or gradual, either in its composition, structure, hydrology or vegetation. The changes can be due to geology, climate, weathering, land-use and earthquakes. A significant reduction in the hazards caused by landslides can be achieved by preventing the exposure of population and facilities to landslides and by physically controlling the landslides. Developmental programs that involve modification of the topography, exploitation of natural resources and change in the balance load on the ground should not be permitted. Some critical measures that could be undertaken to prevent further landslides are drainage measures, erosion control measures such a bamboo check dams, terracing, jute and coir netting and rockfall control measures such as grass plantation, vegetated dry masonry wall, retaining wall and most importantly preventing deforestation and improving afforestation. Disasters cannot be totally prevented. However early warning systems, careful planning and preparedness on part of the vulnerable community would help in minimizing the loss of life and property due to these disasters.
DISASTER MANAGEMENT: FLOODS, EARTHQUAKES, CYCLONES, LANDSLIDES DISASTER MANAGEMENT: FLOODS, EARTHQUAKES, CYCLONES, LANDSLIDES Reviewed by শ্রী শ্রী সত্যনারায়ণ নমঃ on November 09, 2018 Rating: 5

No comments:

Powered by Blogger.